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Abswact. It is shown that the analysis of surface layers by neuuon reflection inlerfemmelry 
is considerably enhanced by performing lhe reflectometry with phase information. We discuss 
lwo methods of providing such information One method involves physically adding an exIra 
reference layer. whose amplilude and phase an known theoretically. The other uses the Lloyd's 
mirmr configuration, in which a direclly propagating ray that interferes with the reflected ray 
supplies the phase information The melhods have much in common with holography. 

1. Introduction 

There are many different ways to study the structure of matter using particle scattering. 
Here we discuss neutron surface reflection, which is capable of determining the surface 
matter distribution [I]  (for recent discussions of this method see 12-71). The main idea of 
this method relates to coherent low-energy neutron propagation through matter. It is well 
known that the propagation of a neutron beam can be described by geometrical optics using 
the refractive index 

(1) 
A2 

2n 
n = l + - N f  

where h is the neutron wavelength, f is the fonvard scattering amplitude, and the N is 
the nuclear number density [8]. Note that, in this paper, we do not consider ferromagnetic 
surfaces and, as a consequence, spin is ignored. 

As we consider only low-energy neutrons, the forward scauering amplitude for most 
nuclei is constant and can be described in terms of the scattering length h ( b  = - f (0)). 
At these energies, non-resonant s-wave scattering is usually dominant, the scattering by 
other partial waves making corrections no greater than 1 in IO3. From (1) for the case 
n < 1, neutrons are totally externally reflected by the surface, provided c o s 0  2 n,  (where 
0 is the glancing angle). Therefore, one can consider three different regimes of neutron 
reflection: total neutron reflection, ordinary neutron reflection and weak neutron reflection. 
Total reflection is interesting because it is very sensitive to the surface structure, has the 
highest intensity of the reflected beam and can be described analytically using a semiclassical 
approximation (see section 3). Weak reflection (or reflection with a large glancing angle) 
can be described by a form of perturbation theory applicable to continuous spectra (see 
section 4) and can be useful for understanding qualitatively ordinary reflection, which is a 
transition region between these two extreme cases. 

In the analysis of neutron reflection data, numerical fitting of density profile models to 
the data is usually employed (see, for example, [9, IO] and references therein). However, this 
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method does not suffice to determine a totally unknown surface structure by purely numerical 
methods because the phase is unknown. Furthermore, it is impossible to distinguish 
between real surface density fluctuations and numerical approximation noise. There are 
proposals 11 I ,  12) to determine neutron reflection phases using additional measurements of 
neutron absoiption mtes. However, for this procedure to work well the energy dependence 
of the reflection and transmission coefficients must be known to high accuracy over a broad 
energy range. In this paper we discuss the possibility of interference measurements which 
allow the experimental determination of the phases and consequently permit a complete 
inversion of the problem, leading to a unique determination of the density profile. 

For completeness, let us briefly review two widely used numerical methods. The first 
is related lo the numerical solution of the Schrodinger equation for some model potential 
(the density distribution). The density distribution is obtained as a result of a fit to the 
experimental reflectivity using the free parameters of the model density distribution. The 
second method is a multilayer approximation (see, for example, the a description of the 
method [I31 and a recent review of its application to neutron reflection [9]) for the 
determination of the surface smcture. The reflection from each layer is parametrized by a 
characteristic matrix which depends on the boundary conditions for the layer. The resultant 
reflectivity for many layers is then given as a product of the characteristic matrices. The 
model of the surface which is used in conjunction with the multilayer approach contains 
free parameters. These parameters are determined by fitting the predictions of the model to 
the experimental data. 

As mentioned above, all numerical approaches need an a priori model for the density 
distribution. In this paper we are interested in model-independent methods of obtaining the 
density distribution from the experimental data 

Before discussing the relationship between the surface stmcture and the reflection 
amplitude R (where lR12 is the ratio of incident to reflected beam intensities), let us recall 
some general aspects of the scattering process. As is well known, the differential cross 
section for low-energy scattering is given by 
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where the form factor, F ( q )  - Jexp(iq. r)N(T)dr. Here N(r) is the target number 
density, q is the neutron momentum transfer 

IqI =%sin@ (3) 

and k = 2z/h is the neumn wavevector. Since F(q) is simply the Fourier transform of the 
density, N. the direct procedure of obtaining the N(r) distribution from the experimental 
cross section is by Fourier inversion. 

The process of neutron reflection is more complicated because it is effectively a 
multiscattering coherent process. Therefore the integral relation between the form factor and 
the density is more complicated and, in particular, is dependent on the density distribution. 
To show this, we give the expression for the corresponding form factor in the WKB 
approximation: 

F - L -  exp ( iky /F) sinz 0 - - N ( y )  N(y)dy. (4) 

Here y is a coordinate normal to the surface. In general, it is impossible to find an exact 
transformation to invert the reflection coefficient into the density distribution. 
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The purpose of this paper is to find some special cases for which there is a possibility 
of finding a model-independent density distribution in the vicinity of the surface using the 
experimental reflection coefficient I RI2. We will show that there are two extreme cases 
where one can obtain analytical solutions for the density distributions: the case of total 
reflection and the case of weak reflection. 

2. Spatial resolution 

Firstly, let us consider some simple examples (which have analytical solutions) to estimate 
the characteristic spatial resolution for neutron reflection. We are interested in total reflection 
or in reflection in the vicinity of total reflection (in terms of the parameters), where the 
neutron intensity is maximal. For an isotropic sample at small glancing angles (0 << 1) the 
relationship between the angle of total reflection O,, and minimal wave length A, is 

or in terms of the momentum transfer 

The parameters e,,, A, and 9er are called critical parameters, and the region in the vicinity 
of these parameters is the critical region. 

To understand the resolution achievable in neutron reflection, let us compare the 
reflection coefficient from a surface with a rstangular density step with that for a smooth 
behaviour at the surface. For the first case 

N ( y ) = O  y > o  
(7) 

and for the second case 

N ( Y )  = $ N o [ ]  + tanh(~y/A)l  (8) 

where A is a diffuseness parameter ( N ( - A )  F 0.002No and N ( A )  = 0.998No). We use a 
Fermi potential to describe neutron propagation in matter: 

This potential describes well the multiple coherent scattering propagation of low-energy 
neutrons in media (for a detailed discussion see, for example, [81). 

To find the reflection coefficient we salve the one-dimensional Schriidinger equation 
for the coresponding potential. We find lRIZ = 1 for both density distributions, provided 
q c qc, (total reflection). For 9 > qcr the rectangular step distribution leads to 
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whereas the smooth distribution leads to 
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From the last two equations we conclude that IR,[* --t I R , ~ ~  in the vicinity of a critical 
point when 

A << Arh = 4/q,, (rrbN)-’’’ (12) 

where q = qcr for the total reflection case. Equation (12) defines a characteristic surface 
diffuseness, Aeh, which sets the scale of spatial resolution. For typical values, b - 10-l2 cm 
and N - l@Zcm-3, we find Ach - 500A, so that in the vicinity of total reflection it is 
possible to study surfaces with a resolution of about 500A. 

Moreover, the different density distributions lead to different energy (or wavelength) 
dependence of the reflection coefficients. In the vicinity of the critical point, the ratio of 
derivatives is 

Figure 1 shows the reflection coefficients for abrupt and smooth surfaces (equations (IO) 
and ( I  1)). We see that a sharp break in the slope of an experimental reflection coefficient 
determines qcP The slope of the reflection coefficient data for q 4 qcr, together with (13), 
yields the surface diffuseness parameter A. 

It should be noted that to investigate a density distribution with a resolution beaer than 
Aeh. one should use weak reflection because the spatial resolution is proportional to the 
reciprocal of the neutron momentum transfer (see (12)). 

3. The density distribution near the surface: total reflection 

We often need to determine the structure of a surface in which an ‘impurity’ is diffusely 
embedded in an otherwise well understood abrupt surface. The full solution of this reflection 
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problem is difficulq however, if the main part of the surface is regarded as known, the 
determination of the structure of the ‘impurity’ layer is tractable. We now address this 
problem. 

Consider a compound sample consisting of two different substances: one has No(y), 
the density distribution with A < A0 (A, = (aboNo(-co))-1’2, where bo is the scattering 
length for this substance); the other has N(y), the density distribution with A > Ao. We 
are interested in the case 

boNo(y) >> bN(y) (14) 
where b i s  the scattering length of the second substance. The first substance is considered 
to be the main one, the second to be a small admixture. Due to the small diffuseness of the 
main density distribution one can describe it using the rectangular step distribution. The 
purpose of this section is to obtain an analytic dependence of the reflection coefficient on 
the small density distribution, N(y). To do this we use the WKB approximation. There are 
three different regions of the parameters: (i) q < 90. where qo is critical neutron transfer 
momentum for only the No(y) density; (ii) q > qz, where qr is the critical neutron transfer 
momentum for the total density No(y) + N(y); and (iii) qo < q < 4.. 

For the first region we have total reflection. For the second we have the usual reflection. 
We will not discuss these two regions further, since for them the reflection coefficient R 
is dependent only on the average value, N(y), and its derivative aN(y)/ayl,,o. The last 
region is the most interesting, as the total reflection in this region, I RI2 = 1, and therefore 
R = exp (is). We calculate the phase shift 6 using the WKB approximation for two different 
N(y) profiles: (i) N(y) increases in the vicinity of the surface and becomes a constant at a 
large distance from the surface; and (ii) N(y) is large near the surface and becomes zero at 
large distances. From the point of view of the WKB approximation case (ii) needs a special 
approach near the point where N(y) is maximal, since there are two close tuming points. 
This special approach leads to long formulae, unless we exclude from consideration the 
vicinity of the maximal value of N(y). 

The standard WKB method gives 

i - i J m c o t  (a + an) 
1 + i J m c o t  (a + an) R =  115) 

with 

tan$=-J i=Gmcot(a+$n) .  (16) 

a = ,/q2 - qi - 16rbN(y) dy (17) 

4’ - qi - I6abN(y) = 0. (18) 
We conclude from (16) that the experimental value of the phase shift 6 determines a(q). 

This parameter is simply related to N(y) by (17). giving the possibility that N(y) may be 
obtained in a model-independent way. Hence we have a practical method of improving the 
numerical analysis of experimental neutron reflectivity data. 

We must realize that no amount of analysis will yield surface features with spatial 
resolution better than A*. Due to this physical limitation all functions used in fitting the 
density distribution should be smooth on a scale - Ach. For example, fitting the numerical 
data of [IO] should give a reasonably good description of the density distribution with a 
Act, resolution. 

Here qo is the critical neutron transfer momentum for the density No(y) 
f 

and e is a mot of the equation 
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4. The density distribution near the surface: weak reflection 

Weak reflection (large glancing angle 0) may also be studied using the WKB approximation. 
However, when the neutron energy is much larger than the Fermi potential of the medium, 
a smooth density distribution near the surface leads to a real reflection coefficient, as in the 
case of a rectangular step density distribution (see (7)). This obvious result means that for 
large neutron energy a small variation in the density distribution leads to a small perturbation 
of the reflection coefficient, giving us an opportunity to apply perturbation theory to the 
weak reflection case. 

It should be noted that the general inverse scattering problem for weak reflection (in 
particular for the reflection of electromagnetic waves) has been given much attention (see, 
for example, [ 141 and the extensive references therein). According to the above paragraph, 
we shall discuss only the special case of neutron reflection in which the main contribution 
to the reflection amplitude may be treated as the well known reflection amplitude for a 
rectangular step density distribution. Therefore, we are interested in obtaining information 
about small unknown variations of the density distribution. 

To calculate the weak reflection amplitude, R ,  let us consider the following density 
distribution (compare with (7)): 

Y P Gudkov et a1 

N ( y ) = O  y 2 0  

The boundary conditions for the wavefunction at y = 0 yield a reflection amplitude 

iq - 2x 
R = -  

14 -k 2 x  

where x = $ ‘ ( O ) / $ ( O )  and $(y) is the solution of the Schrodinger equation (with the 
potential (9) for the density distribution (19)) for the y < 0 region. Let us assume that we 
know the wavefunction Qo(y) for the density distribution incorporated in the Hamiltonian 
Ho. A small variation of the density distribution yields an additional potential V .  If 
V << Ho, one can solve the problem for the total Hamiltonian H = HO + V using 
continuous spectrum perturbation theory. If $# is the nth iterated wavefunction of the 
Lipman-Schwinger equation, the first iteration is 

where E is the neutron energy. The logarithmic derivative of the wavefunction is now 
given by 

where C o ( y , x )  is a Green function of the Hamiltonian Ho. 
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The substitution of (22) into (20) gives the perturbation theory expression for the 
reflection amplitude: 

At first sight the resulting expression for R I  might seem complicated: however the procedure 
gives a simple analytic expression for the case of reflection by a rectangular step density 
distribution (equation (7)) together with an additional small distribution N(y) of a species 
with scattering length b (see the previous section). The analytic expressions for @(y) and 
Go(y, x )  for a rectangular step (using (22) and (23) to first order in density N(y)), yield 

RI = R o + v ( I + - ) .  (24) 

where 

Here 90 is the critical neutron momentum transfer for the rectangular step potential. ' We 
define ko by 

Because 

we find 

From (28h) one concludes that in the case of weak reflection one may obtain the density 
dismbution near a surface by using Fourier sine inversion for the experimental parameter 
1 ~ 1  COSS, of (25). 

Equations (24H28) agree with the result of the general discussion (equation (4)) in the 
introduction. Perturbation theory leads to the simple relation (28) between the experimental 
value q and the unknown density distribution N ( y ) .  However, it  would be difficult to apply 
this relation to the practical extraction of the density distribution from the experimental 
data since the inversion (28) requires the measurement of q (or RI) over a wide range of 
momentum transfer. Nevertheless, weak reflection may be used as an additional method to 
verify the density distribution N ( y )  obtained from total reflection data. 
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5. Using an artificial layer to obtain phase information 

We consider the measurement of the neutron reflection coefficient of a surface, with and 
without the addition of an artificially applied surface layer. This method is normally used 
in optics; however it has been also suggested that it could be used in reflection studies [15]. 
On the basis of the numerical solution of a surface model it was concluded in that paper that 
there are two advantages in using speckle holography: first, it may be possible to use the 
data to distinguish between several previously ambiguous solutions: second, it is possible 
to analyse the experimental data using Fourier transformations. The details of this method 
of analysis are given below. 

The modification of the reflection by the additional surface layer, whose contribution to 
reflection is understood, can provide us with the needed reference phase. 

This possibility is related to the results of section 2. If there is a layer on the surface 
with a thickness I << Ach = 4/q (see (12)). the layer may be described by the &function 
potential 
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Here we use the general expression for the forward scattering amplitude f ( 0 )  to allow for 
absorption as well. It should be noted that in accordance with the restriction 1 << A this 
approach is best suited to strong (or total) reflection. 

Using (20) as the expression for the reflection coefficient with the surface layer absent, 
and then using the boundary conditions for the wavefunction in the case of a 8-shape 
potential (29), we obtain the following expression for the reflection coefficient with the 
layer: 

(30) 

where 

If we resolve p into its real and imaginary parts 5 and y ,  i.e. p = p + iy, we find in terms 
of the complex f ( 0 )  that e = 4nNbl/q and y = -4xNI(Imf(O))/q. Then, from (31). 
one obtains 

where R = r exp (U).  
For neutron reflection without absorption this expression leads to 

rz + p 2 ( l  + r z  + 2rcos6) - Z r s i n S  
1 + t z ( I  + r2 + 2rcosa) - zgr sins ' I R ~ I Z  

<< 1, (33) has the simple form For the case 

(33) 

(34) 
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A strongly absorbing layer ( Iy [  >> IC;[) leads to a modification of the previous total reflection 
(provided [RI2 = r2 = I), namely 

This expression yields simple oscillations of the reflection coefficient, if JyJ << I: 

l / ? ~ l ’ N  I -4y(l +cos&). (36) 

We see that the separate measurements of the intensity of neutron beams reflected from 
the original surface and the artificially lilyered surface yields the phase of the reflection 
coefficient. 

6. Numerical examples 

Using the above expressions, one may predict experimental results for neutron reflection 
for different cases. For this purpose we will consider the case of neutron reflection with 
momentum transfer q - (0.01 - l.O), A-’ from a nickel surface (Nb = 9.41 x 10-6A-2) 
with a specified admixture. 

For the total reflection with the admixture density distribution 

N ( y )  = N y 2 / a Z  (37) 

the results of the WKB approximation in section 3 (see (16)) are shown in figures 2 and 3 
for admixtures with Nb = 5 x 10-’A-’ for the case a = IoOOA and a = loo,&. One 
can see that the phase of reflection is very sensitive to the amount of the admixture and its 
spatial distribution. 

Figure 2. Phase of refiectian. The 
admixture parameten are Nb = 5 x 
iO-’A-’ and a = iMA. 

Weak reflection (section 4) leads to a modification of the. reflection coefficient for the 
rectangular substrata distribution of nickel (equation (26) and figure 4) admixed with the 
density distribution 

N ( y )  = N sin ( -ny /a )  (38) 
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0 .8  

0 , 6  

0 . 4  

0 . 2  

o . a z q  Figure 3. Phase of reflection. The 
admixture parameters are Nb = 5 x 
IO-' A-2 and a = IOOA. 

2 
for y E [0, -a]. The reflection coefficient (25) for the parameters Nb = IO-6 A- and 
a = 10008, is shown in figure 4. This example shows that weak reflection is also sensitive 
to the admixture distribution. 

Finally, let us consider the case of layered surfaces. We accept (11) as a model for 
the non-layered nickel surface with the parameter A = lMlO8,. This reflection coefficient 
is shown in figure 5 ,  The modifications of this coefficient by a thin layer ( I  = I d )  with 
a pure imaginary neutron scattering amplitude are shown in figure 5, i.e. for b = 0 and 
N Imf(0) = 9.4 x 10-6A-2. It is obvious that this modification may also be used io obtain 
information about the phase of reflection (see (32) and (35)). 

7. Phase information using the Lloyd mirror configuration 

The Lloyd mirror interferometer [16,17] (see figure 6) can provide phase information for 
neutron reflection. The direct neutron beam can be considered as a reference beam for 
the reflected one. The total intensity of the sum of these two beams, fSm, provides the 
interference pattem on the screen: 

Is, = 1 + lRlZ + 2lRI cos(& +6,,,). (39) 
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0.9 

0 . 8  

. 

- I \  
Figure 5. The horizontal line. 
IRI' = 1. shown the reReaion wef- 
ficient for no layer, i.e. total reflec- 
tion The CUNG which defers signif- 
icantly from this total reflection line, 
shows the effect of a thin absorp- 
tive layer, for which the Ihickness. 
1 = IOA. scattering length b = 0. 

0 . 5  

:::- \ 
0.012 0.014 0.016 0.om 0 . 0 1  o.&  and N I m f ( 0 )  =9.41 x 10-6A-2. 

Here we assume that the intensity of the reference beam is one (i.e. the direct and incident 
beams have equal amplitude) and use the standard definition for the reflection amplitude 
R = IRI exp8. The geometric phase shift due to the difference in the paths of the reference 
and reflected beams has the simple expression (for notation see figure 6) 

apeom = k ( J L z  + (x + d)2  - J L 2  + (x  - d ) 2 )  

and for the case x .  d < L is proportional to the angle (I: 

ageam = Zkdor. (41) 

Figure 7 shows the interference pattem for neutron reflection with A = 2A on the surface 
with a density distribution according to (1  1) with parameters qo = 0.022 and A = 10008, 
on an interferometer with d = 1 cm and L = 5 m. 

1 

Figure 6. The Lloyd minor interfer- 
ometer for neutron reflection show- 
ing the djrect and reflected rays. The 
height of the slit above the reference 
surface is d,  L is the slit-todetector 
distance. and x is the detector height 
in the detector plane. measured from 
the plane of the mirror. 

8. Conclusion 

In this paper we have considered the reflection of neutrons by surfaces in several ways, 
each of which shows an effect of the phase of reflection. In turn this enhances our ability 
to determine of the surface structure. 
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Figure 7. The intensity pattern for 
Le Lloyd mirror inlerfemmeter. For 
reference, the intensity is also shown 
when the reference beam is absent. 

The first method considers the contribution to reflection by the deviation of the structure 
of the surface from a fully understood simple surface structure. The limits to the resolution 
of this method were also found. 

A second method shows how the artificial addition of a surface layer of known properties 
modifies the reflection of the unknown underlying surface, thereby providing extra phase 
information. 

A third method makes use of a direct reference ray (in a Lloyd minor configuration) to 
provide, in a holographic-like way, the reference phase. 
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